Effect of small particles on the near-wall dynamics of a large particle in a highly bidisperse colloidal solution.
نویسندگان
چکیده
We consider the hydrodynamic effect of small particles on the dynamics of a much larger particle moving normal to a planar wall in a highly bidisperse dilute colloidal suspension of spheres. The gap h(0) between the large particle and the wall is assumed to be comparable to the diameter 2a of the smaller particles so there is a length-scale separation between the gap width h(0) and the radius of the large particle b>>h(0). We use this length-scale separation to develop a new lubrication theory which takes into account the presence of the smaller particles in the space between the larger particle and the wall. The hydrodynamic effect of the small particles on the motion of the large particle is characterized by the short time (or high frequency) resistance coefficient. We find that for small particle-wall separations h(0), the resistance coefficient tends to the asymptotic value corresponding to the large particle moving in a clear suspending fluid. For h(0)>>a, the resistance coefficient approaches the lubrication value corresponding to a particle moving in a fluid with the effective viscosity given by the Einstein formula.
منابع مشابه
Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملThe effect of wall strengtheners on the performance of double-stage electrostatic precipitators
The presence of wall strengtheners in double-stage electrostatic precipitators affects gas velocity, electrical field and particle movement over the ESP. In this work we have used our previous mathematical model for double-stage ESP {Talaie et. al (2001) [10]] to study the effect of wall strengtheners on the performance of double-stage ESP. One of the important findings was that, due to the fac...
متن کاملNumerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds
Fluid flow has a fundamental role in the performance of packed bed reactors. Some related issues, such as pressure drop, are strongly affected by porosity, so non-spherical particles are used in industry for enhancement or creation of the desired porosity. In this study, the effects of particle shape, size, and porosity of the bed on the hydrodynamics of packed beds are investigated with three ...
متن کاملSegregation Behaviour of Particles in Gas Solid Fluidized Beds at Elevated Pressure
A comprehensive mathematical model based on the discrete particle model and computational fluid dynamics was utilized to investigate mixing and segregation of particles in fluidized beds at high pressure. To quantify the extent of mixing in the bed, the Lacey mixing index was used. Simulations were carried out with different mass fractions of small particles at various pressures ranging from 1 ...
متن کاملEffect of colloidal particle size on adsorbed monodisperse and bidisperse monolayers.
Coating hydrogel films or microspheres by an adsorbed colloidal shell is one synthesis method for forming colloidosomes. The colloidal shell allows control of the release rate of encapsulated materials, as well as selective transport. Previous studies found that the packing density of self-assembled, adsorbed colloidal monolayers is independent of the colloidal particle size. In this paper we d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 128 21 شماره
صفحات -
تاریخ انتشار 2008